INDIAN SCHOOL AL WADI AL KABIR
 ASSESSMENT I 2022-2023
 CHEMISTRY

CLASS XI
MAX MARKS: 70

1.	a) 10 mol	1
2.	c) 2.05%	1
3.	a) Mole fraction	1
4.	b) $\mathrm{CH}_{2} \mathrm{O}$	1
5.	d) Be^{3+} ion	1
6.	c) 10,5	1
7.	b) Pairing of electrons does not take place until all the orbitals are singly occupied.	1
8.	c) 2	1
9.	b) Unniltrium Unt	1
10.	d) ($n-2) f^{1-14}(n-1) d^{0-1} n s^{2}$	1
11.	d) Assertion is wrong, but reason is correct statement.	1
12.	a) Both assertion and reason are correct statements, and reason is the correct explanation of the assertion.	1
13.	d) Assertion is wrong, but reason is correct statement.	1
14.	d) Assertion is wrong, but reason is correct statement.	1
15.	a) Both assertion and reason are correct statements, and reason is the correct explanation of the assertion.	1
16.	i) C ii) D iii) B iv) C v) c	1
17.	Mg is in excess	$1 / 2{ }^{1 / 2}$

	0.5 mole of Mg has only 0.125 mol of O 2	$11 / 2$
18.	Mole of $\mathrm{NaOH}=0.1$ Mole of $\mathrm{H}_{2} \mathrm{O}=2$ Mole fraction of $\mathrm{NaOH}=0.1 / 2.1=0.04$ Molefraction of water $=0.96$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
19.	The Law of Multiple Proportions states that "If two elements combine to form more than one compound between them, the mass ratios of the second element which combine with a fixed mass of the first element will always be the ratios of small whole numbers Valid example	1 1
20.	$\Delta \mathrm{x} . \Delta \mathrm{p}=\mathrm{h} / 4 \pi$ $\Delta \mathrm{x}$ - change in position .$\Delta \mathrm{p}$ - change in momentum OR (i) Principal quantum number (ii) Magnetic quantum number	$1 / 2 \times 2=1$
21.		2
22.	$\begin{aligned} & \mathrm{N}=\mathrm{n}-l-1 \\ & \mathrm{~N}=3-1-1=1 \end{aligned}$	1 1
23.	Any two valid points of difference	$1 \times 2=2$
24.	(a) Statement of Aufbau principle (b) $\mathrm{N}+1$ rule (c) Pauli's exclusion principle statement	$1 \times 3=3$
25.	$\Delta \mathrm{x} . \Delta \mathrm{p}=\mathrm{h} / 4 \pi$ Conversion of g into kg angstrom into m $\Delta \mathrm{v}=0.527 \times 10-23 \mathrm{~m} / \mathrm{s}$ OR (i) 2 p (ii) 2 s (iii) $4 f$ (iv) $4 d$ (v) $4 p$ (vi) 3 d	$1 / 2$ 1 $11 / 2$ $1 / 2 \times 6=3$
26.	(i) 1 s 22 s 2 2p6 3s $23 \mathrm{p} 63 \mathrm{~d} 5 .-5$ unpaired electrons (ii) $1 \mathrm{~s} 22 \mathrm{~s} 22 \mathrm{p} 63 \mathrm{~s} 23 \mathrm{p} 63 \mathrm{~d} 5 .-5$ unpaired electrons (iii) $[\mathrm{Ar}] 3 \mathrm{~d} 4 .-4$ unpaired electrons	$(1 / 2+1 / 2) \mathrm{x} 3$

27.	(i) (ii)	B is the limiting reagent 4.5 moles	$1.5 \times 2=3$
28.		Give any three valid differences	1x3=3
29.		Mass percent of $\mathrm{Ca}=(120310) \times 100=38.71 \%$ Mass percent of $\mathrm{P}=(62310) \times 100=20 \%$ Mass percent of $\mathrm{O}=(128310) \times 100=41.29 \%$ OR (i) Gay Lussacs law of combining volumes (ii) Statement (iii) 100 ml	$1 \times 3=3$
30.		(i) C - group 16 D - group 1 (ii) C - period 3 D - period 4 (iii) C- p block D - s block	$1 / 2 \times 6=3$
31.		(a) Empirical formula - $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$ $\mathrm{n}=1$ Molecular formula $=\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$ (b) Molarity $=$ mass $\% \times 10 x$ Density/Molar mass $=49 \times 10 \times 9.8 / 98=49 \mathrm{M}$ OR (a) 8 g (b) $\mathrm{M}=56 \mathrm{~g}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2.5 \\ & 2.5 \end{aligned}$
32.		(a) De Broglie wavelength $=6.6 \times 10^{-32} \mathrm{~m}$ (b) The frequency of radiation absorbed or emitted when transition occurs between two stationary states that differ in energy by E , is given by (c) $\begin{aligned} & \mathrm{v}=\frac{\Delta \mathbf{E}}{\mathbf{h}}=\frac{\mathrm{E}_{2}-\mathbf{E}_{1}}{\mathrm{~h}} \\ & \text { angular momentum is mvr }=\frac{\mathrm{nh}}{2 \pi} \\ & 2 \pi \mathrm{r}=\frac{\mathrm{nh}}{\mathrm{mv}} \end{aligned}$ $\text { As } \lambda=\mathbf{h} / \mathrm{m} \mathbf{v} \quad 2 \pi \mathrm{r}=\mathrm{n} \lambda$ OR (a) $\lambda=h / \mathrm{m} \mathrm{v}^{2}$ $\mathbf{p}=\mathbf{1 0}^{22} \mathrm{kgm} / \mathrm{s}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \end{aligned}$ 2

33.

(d) 16 orbitals		

