INDIAN SCHOOL AL WADI AL KABIR ASSESSMENT I 2022-2023 CHEMISTRY

CLASS XI MAX MARKS: 70

1.	a) 10 mol	1
2.	c) 2.05 %	1
3.	a) Mole fraction	1
4.	b) CH ₂ O	1
5.	d) Be^{3+} ion	1
6.	c) 10, 5	1
7.	b) Pairing of electrons does not take place until all the orbitals are singly occupied.	1
8.	c) 2	1
9.	b) Unniltrium Unt	1
10.	d) $(n-2) f^{1-14} (n-1) d^{0-1} ns^2$	1
11.	d) Assertion is wrong, but reason is correct statement.	1
12.	a) Both assertion and reason are correct statements, and reason is the correct explanation of the assertion.	1
13.	d) Assertion is wrong, but reason is correct statement.	1
14.	d) Assertion is wrong, but reason is correct statement.	1
15.	a) Both assertion and reason are correct statements, and reason is the correct explanation of the assertion.	1
16.	i) C ii) D iii) B iv) C v) c	1
17.	Mg is in excess	1/2 1/2

	0.5 mole of Mg has only 0.125 mol of O2	1 1/2
18.	Mole of NaOH = 0.1	1/2
10.	Mole of $H_2 O = 2$	
		1/2
	Mole fraction of NaOH = $0.1/2.1 = 0.04$	1/2
	Molefraction of water $= 0.96$	1/2
19.	The Law of Multiple Proportions states that "If two elements combine to form more than one compound between them, the mass ratios of the second element which combine with a fixed mass of the first element will always be the ratios of small whole numbers Valid example	1
		1
20.	$\Delta x.\Delta p=h/4\pi$	1
	Δx – change in position . Δp - change in momentum	$\frac{1}{2}$ x2 =1
	OR	
	(i) Principal quantum number	1x2=2
21.	(ii) Magnetic quantum number	2
21.	Oxygen	2
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
22.	N=n-l-1	1
	N=3-1-1=1	
		1
23.	Any two valid points of difference	1x2=2
24.	 (a) Statement of Aufbau principle (b) N+l rule (c) Pauli's exclusion principle statement 	1x3=3
25.	(c) Pauli's exclusion principle statement $\Delta x.\Delta p=h/4\pi$	1/2
23.	Conversion of g into kg angstrom into m	1
	$\Delta v = 0.527 \text{ x } 10\text{-}23 \text{ m/s}$	1 1 ¹ ⁄2
	OR	
	(i) $2p$ (ii) $2s$ (iii) $4f$ (iv) $4d$ (v) $4p$ (vi) $3d$	$\frac{1}{2} \ge 6 = 3$
26.	(i) $1s2 2s2 2p6 3s2 3p6 3d5 5$ unpaired electrons (ii) $1s2 2s2 2p6 3s2 3p6 3d5 5$ unpaired electrons (iii) $[Ar]3d4 4$ unpaired electrons	$(\frac{1}{2} + \frac{1}{2}) \times 3$

27.	(i) B is the limiting reagent(ii) 4.5 moles	1.5 x 2=3
28.	Give any three valid differences	1x3=3
29.	Mass percent of Ca = $(120310) \times 100 = 38.71\%$ Mass percent of P = $(62310) \times 100 = 20\%$ Mass percent of O = $(128310) \times 100 = 41.29\%$	1x3=3
	OR (i) Gay Lussacs law of combining volumes (ii) Statement (iii) 100 ml	1 1 1
30.	(i) $C = group \ 16$ $D = group \ 1$ (ii) $C = period \ 3$ $D = period \ 4$ (iii) $C = p block \ D = s block$	$\frac{1}{2} \ge 3$
31.	 (a) Empirical formula – C₅H₈O₂ n=1 Molecular formula = C₅H₈O₂ (b) Molarity = mass % x10x Density/Molar mass = 49x10x9.8/98 = 49 M OR 	1 1 1 1 1
	(a) 8 g (b) M=56 g	2.5 2.5
32.	 (a) De Broglie wavelength = 6.6x10⁻³² m (b) The frequency of radiation absorbed or emitted when transition occurs between two stationary states that differ in energy by E, is given by (c) v = ΔE/h = E₂-E₁/h 	2 1 2
	v = h = h angular momentum is $mvr = \frac{nh}{2\pi}$.	
	$2\pi r = \frac{nh}{mv}$	
	$As \lambda = h/m v \qquad 2\pi r = n\lambda$	
	OR (a) $\lambda = h/m v$ $p=10^{22} kgm/s$	2

(d) 16 orbitals	